RELATÓRIO

AVALIAÇÃO DE CULTIVARES DE MILHO PARA PRODUÇÃO DE SILAGEM E GRÃOS SAFRA 2024/2025

REALIZAÇÃO:

APTA Regional Unidades de Pesquisa e Desenvolvimento: Adamantina e Pindorama

IAC Centro de Seringueira e Sistemas Agroflorestais: Votuporanga

Núcleos Regionais de Pesquisa: Mococa e Tatuí

Dakar Pesquisa Agrícola LTDA, Castro/PR

USP/ESALQ EsalqLab, Departamento de Zootecnia, Piracicaba

APOIO Fundação de Apoio à Pesquisa Agrícola (FUNDAG)

Empresas de Sementes de Milho

ÍNDICE

Página	Tabela	
I		Equipe
1		Material e Métodos
1	1	Cultivares de milho para silagem e grãos avaliados na safra 2024/2025
2	2	Manejo sanitário e controle de plantas daninhas na safra 2024/2025
4		Consideraçõe Gerais
4		Figura1. Porcentagem de plantas com sintomas de enfezamento e/ou viroses em Mococa aos 85 dias após a semeadura, safra 2024/2025
5	3	Caracterização dos experimentos de milho para silagem e grãos na safra 2024/2025
6	4	Valores médios dos parâmetros agronômicos do milho para silagem na safra 2024/2025
7	5	Parâmetros agronômicos de cultivares de milho colhidos para silagem na safra 2024/2025 em Mococa (SP)
8	6	Parâmetros agronômicos de cultivares de milho colhidos para silagem na safra 2024/2025 em Tatuí (SP)
9	7	Caracteres agronômicos de milho avaliados na colheita de grãos na maturidade em Adamantina na safra 2024/2025
10	8	Caracteres agronômicos de milho avaliados na colheita de grãos na maturidade em Votuporanga na safra 2024/2025
11	9	Predição do valor nutritivo de cultivares de milho, planta inteira — Mococa, safra 2024/2025
12	10	Predição do valor nutritivo de cultivares de milho, planta inteira — Tatuí, safra 2024/2025
13		ANEXO I - Divulgação e consulta aos dados

AVALIAÇÃO DE CULTIVARES DE MILHO PARA PRODUÇÃO DE SILAGEM E GRÃOS APTA/IAC/ESALQ-USP/Dakar - Safra 2024/2025

EQUIPE

Coordenação

Solidete de F. Paziani APTA Regional de Pindorama solidete.paziani@sp.gov.br

Programa Milho IAC/APTA

Aildson Pereira Duarte Instituto Agronômico, Campinas duarteaildson@hotmail.com

Programa Milho IAC/APTA

Luiz Gustavo Nussio USP/ESALQ nussio@usp.br

Departamento de Zootecnia

Responsáveis técnicos

Ana Beatriz Rotelli USP/ESALQLab, Piracicaba beatrizrotelli@gmail.com
Fernando T. Nakayama APTA Regional/Adamantina ftnakayama@sp.gov.br

João Pedro M. do Carmo USP/ESALQLab, Piracicaba financeiro.esalqlab@gmail.com

Igor Quirrenbach Carvalho Dakar Pesquisa Agrícola LTDA igorqc@gmail.com

Marcelo Ticelli

NRP de Tatuí/IAC/APTA

marcelo.ticelli@sp.gov.br

Paulo Boller Gallo

NRP de Mococa/IAC/APTA

paulo.gallo@sp.gov.br

Rodrigo A. Vitorino

APTA Regional/Adamantina

rodrigo.vitorino@sp.gov.br

Rogério S. de Freitas

IAC/CASSAF, Votuporanga

rogerio.freitas@sp.gov.br

Apoio técnico

Ariel da Conceição Ventura NRP de Tatuí/IAC/APTA

Bento Marcos Braga APTA Regional/Adamantina

Carlos César Alves ESALQLab/USP, Piracicaba/SP

Edimilson Alves de Mello APTA Regional/Assis

Edvaldo Novelli Gomes IAC/CASSAF, Votuporanga
José Geraldo de Figueiredo NRP de Mococa/IAC/APTA
Luiz Coleti APTA Regional/Adamantina
Ronaldo Eduardo da Silva NRP de Mococa/IAC/APTA

Wilson Luiz Strada

NRP de Mococa/IAC/APTA

IAC/CASSAF, Votuporanga

Acesso aos dados parciais:

Guia da Forragem Site e aplicativo para celular (Google Play e App Store)

http://guiadaforragem.com.br/

Zea mays https://zeamays.com.br/avaliacao-de-cultivares/silagem/

AVALIAÇÃO DE CULTIVARES DE MILHO PARA SILAGEM E GRÃOS - SAFRA 2024/2025

MATERIAL E MÉTODOS

Na safra 2024/2025 foram avaliados 18 cultivares de milho para produção de forragem para silagem e grãos (Tabela 1). Para a avaliação da produtividade e valor nutritivo da forragem no ponto de silagem foram instalados experimentos em dois locais, nos Núcleos Regionais de Pesquisa em Mococa e Tatuí (IAC). A produtividade de grãos na maturidade foi avaliada nestes dois locais e também na Unidade Regional de Pesquisa e Desenvolvimento de Adamantina (APTA Regional) e no Centro de Seringueira/IAC em Votuporanga.

TRAT.	CULTIVAR	Empresa
1	AL Piratininga	CATI
2	AG 8701 PRO4	Agroceres
3	AGN 2M76 PRO3	Agromen
4	MG 616 PWU	Morgan
5	AGN 2M11 PRO3	Agromen
6	AGN 2M33 PRO3	Agromen
7	AGN 2M40 PRO4	Agromen
8	DKB 177 TRE	Dekalb
9	DKB 356 PRO4	Dekalb
10	DKB 358 PRO4	Dekalb

DKB 390 PRO4

HL 22091 VIP3

HL 2162 PRO2

22066 VIP3

FS 695 PWU

T 1503 PWU

NS 44 VIP3

NS 71 VIP3

11

12

13

14

15

16

17

18

Tabela 1: Cultivares de milho para silagem e grãos avaliados na safra 2024/2025.

O delineamento experimental foi o de blocos ao acaso com quatro repetições (parcelas). Cada parcela foi composta por 6 linhas de 5,0 m de comprimento, espaçadas de 50 a 90 cm, conforme o local. Após a adubação da semeadura, nas linhas demarcadas, foram delimitadas as parcelas e realizada a semeadura manual ou com matraca, colocando-se 2 sementes/cova.

Dekalb

Biomatrix

Biomatrix

Biomatrix

Forseed

Tevo

Nidera

Nidera

Entre 10 a 15 dias após a semeadura foi feito o desbaste e a população inicial estabelecida em 65.000 plantas/ha. Demais informações sobre a semeadura e a caracterização dos ensaios são encontradas na Tabela 3.

Em todas as parcelas foi anotada a data de florescimento quando 50% das plantas estavam com pendão aberto, sendo computados dias após a semeadura.

Definiu-se o ponto para o início da colheita monitorando o teor de matéria seca (30 a 35% MS) das plantas da bordadura, observando a linha de leite dos grãos entre ½ e 2/3. Neste estágio, foram amostradas duas, sendo moídas e estimado o teor de MS, utilizando-se de metodologias do forno de micro-ondas (Valentini et al., 1998) e/ou a secagem convencional em estufa (Silva, 1981). Confirmado o teor de MS o cultivar foi colhido.

Aplicações de inseticidas, fungicidas e herbicidas foram realizadas conforme necessidades locais, atendendo ao manejo de rotina e às doses recomendadas para cada produto (Tabela 2).

Tabela 2: Manejo sanitário e controle de plantas daninhas na safra 2024/2025.

Local	Data	Operação	Produto
	10/12/2024	Inseticida	Profenofós + Lufenuron
	17/12/2024	Inseticida	Clorfenapir
	23/12/2024	Inseticida	Acetamiprido + Bifentrina
			Clorotalonil
Adamantina	29/12/2024	Inseticida	Acefato
			Clorfenapir
	06/01/2025	Inseticida	Tiametoxan + Lambidacialotrina
			Trifloxistrobina + Tebuconazol
	10/01/2025	Inseticida	Acetamiprido + Bifentrina
	09/12/2024	Herbicida	Atrazina
	09/12/2024	Inseticida	Match + Fipronil + Verdaviz + Pirate
Мососа	20/12/2024	Inseticida	Pirate
	22/12/2024	Inseticida	Match
	30/12/2024	Herbicida	Soberan
	11/12/2024	Inseticida	Acefato + Imidacloprid
	17/12/2024	Inseticida	Sperto + Imidacloprid
Tatuí	1771272024	Herbicida	Soberan + Atrazina
	24/12/2024	Inseticida	Imidacloprid + Sperto + Engeo Pleno
	30/12/2024	Inseticida	Imidacloprid + Sperto + Engeo Pleno
	12/12/2024	Inseticida	Pirate+Match+Cipermetrina
	13/12/2024	Inseticida	Belt+Imidacropid
Votuporanga	16/12/2024	Inseticida	Fastac+Match
Votuporanga	26/12/2024	Inseticida	Connect+Fastac+Game+Goplan
	27/12/2024	Inseticida	Atrazina+Soberan+Certero+Goplan
	30/12/2024	Inseticida	Exalt

Colheita para silagem: em quatro metros nas duas linhas úteis centrais de cada parcela, foi contado o número total de plantas e as plantas quebradas e acamadas. Estas linhas foram cortadas e pesadas.

Foi retirado um feixe de 10 plantas representativas por parcela e medida a altura de planta (inserção da última folha). Estas 10 plantas foram trituradas, homogeneizadas e retiradas amostras (500g) que foram congeladas e enviadas ao Laboratório de Bromatologia ESALQLAB (USP em Piracicaba/SP), para serem secas e moídas a 1 mm. Foram realizadas as estimativas de composição bromatológica (através da metodologia NIRS): amido, carboidratos não fibrosos (CNF), extrato etéreo (EE), fibra em detergente ácido (FDA), fibra em detergente neutro (FDNom, descontado o teor de matéria mineral), lignina, matéria mineral (MM), nutrientes digestíveis totais (NDT), proteína bruta (PB). Com base nestes dados e na produtividade de matéria seca estimou-se o potencial de produtividade de leite (T de leite/T MS) através do Milk 2006, atualizado através do DairyOne. E por fim foi estimado o potencial produtivo de leite por área (T Leite/ha).

Foi retirado um segundo feixe de 10 plantas representativas para o fracionamento das espigas e estimativas da produtividade de grãos no ponto de ensilagem. As espigas foram separadas em brácteas e sabugo com grãos, pesados e secos em estufa (60-65°C) por 72

horas. As espigas secas foram debulhadas e os grãos pesados para determinação do rendimento de grão na espiga e da produtividade de grãos no estádio de silagem.

Colheita de grãos na maturidade: em duas linhas úteis centrais foi anotado o número total de plantas e o número total de espigas. As espigas foram retiradas, pesadas, debulhadas, pesando-se a massa de grãos e medida sua umidade para a determinação da produtividade de grãos na maturidade, corrigida para 13% de umidade dos grãos.

Todos os dados foram analisados e as médias comparadas pelo teste Tukey (5%).

Os dados podem ser consultados nos sites https://zeamays.com.br/avaliacao-de-cultivares/silagem/ e http://guiadaforragem.com.br/, sendo este último também disponível como aplicativo para celular (ANEXO I).

REFERÊNCIAS BIBLIOGRÁFICAS

SILVA, D.J. **Análise de Alimentos** (Métodos Químicos e Biológicos), 1981, Viçosa. 166p. VALENTINI, S.R., CASTRO, M.F.P.M., ALMEIDA, F.H. Determinação do teor de umidade de milho utilizando aparelho de micro-ondas. **Ciência e Tecnologia de Alimentos**, v. 18, n. 2, p.237-240, 1998.

CONSIDERAÇÕES GERAIS

Em Adamantina e Votuporanga, ao contrário dos anos anteriores, o ambiente foi favorável e as plantas de praticamente todos os cultivares mantiveram-se sadias, até mesmo em relação aos enfezamentos e viroses, apresentando produtividade satisfatória.

Já em Mococa e em Tatuí a ocorrência de estresse climático causou prejuízo aos experimentos. Em Tatuí ocorreu precipitação dentro do normal até a fase do florescimento e após este período as chuvas foram insuficientes até o final do ciclo. Em Mococa ocorreram dois períodos de adversidades climáticas, com falta de chuva e elevadas temperaturas, entre 12 e 25 de janeiro de 2025 (fase de pendoamento) e entre 10 de fevereiro e 15 de março (fase de enchimento dos grãos), associada à alta incidência de plantas com enfezamento e/ou viroses (Figura 1). A colheita de grãos na maturidade foi realizada nestes dois locais e a produtividade média obtida foi de 3,95 t/ha em Mococa e de 4,40 t/ha em Tatuí, porém, como foi priorizada a colheita das melhores linhas para avaliação no momento da ensilagem, os dados obtidos na colheita de grãos maduros apresentaram elevados coeficientes de variação, não sendo feita a comparação dos cultivares.

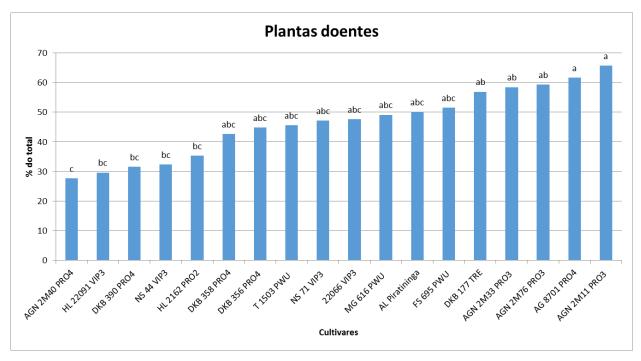


Figura 1. Porcentagem de plantas com sintomas de enfezamento e/ou viroses em Mococa aos 85 dias após a semeadura, safra 2024/2025*

^{*} Porcentagem de plantas com sintomas de enfezamento e/ou viroses, tais como descoloração e deformação foliar, subdesenvolvimento, espigas com lesões ou descoloração nas brácteas e seca prematura das plantas. A avaliação da incidência dos enfezamentos e viroses foi realizada de forma conjunta, pela frequente ocorrência simultânea de várias destas doenças na mesma planta, tendo sido observados sintomas de enfezamentos, mosaico comum (SCMV) e mosaico estriado (MSMV). Médias seguidas por letras distintas diferem entre si ao nível de 5% de significância pelo teste de Tukey (Análise dos dados transformados em "√(x+1/2)". C.V. = coeficiente de variação 11,31.

Tabela 3. Caracterização dos experimentos de milho para silagem e grãos na safra 2024/2025.

Local	Altitude	Colo	Semea	dura	População	Manejo	solo		A	dubação		Colheita Silage	n Ciclo	Produtivi	dade (t.ha ⁻¹)
Local	Ailitude	Solo -	Data	Espaç.	final	Histórico N	Histórico Método 1		neadura	Cobertura		Início	Médio ²	Silagem	Grãos
	m	Tipo		cm	pl ha ⁻¹			kg ha ⁻¹	NPK	kg ha ⁻¹	Fonte	Data	Dias	MS	Ensilagem
Mococa	665	Argissolo	27/11/24	60	64.544	pousio	С	300	08-24-12	400 + 400	27-00-10	27/02/25	92	11,54	4,41
Tatuí	610	NVd	20/11/24	50	68.411	pousio	С	430	08-28-16	200 + 260	ureia	26/02/25	100	14,56	3,58
Votuporanga ³	480	LVe	26/11/24	80	62.847	feijão	С	250	08-28-16	240	20-00-20	-	-	-	-
Adamantina ³	390	LE	22/11/24	90	63.519	amendoir	С	250	04-30-10	200 150 200	32-00-00 21-00-00 20-00-20	-	-	-	-

¹ Método de plantio: C = convencional; PD = plantio direto ² Número médio de dias após a semeadura

³ Avaliada apenas a produtividade de grãos na maturidade

Tabela 4. Valores médios dos parâmetros agronômicos do milho para silagem na safra 2024/2025

População	Altura	Massa Seca	Produção	de Massa	Grãos	DΛ±DΩ ²	Ciclo ³	
final	Planta	Relativo	Verde	Seca	Ensil ¹	PA+PQ		
plantas.ha ⁻¹	cm	6 MS 6	t ha ⁻¹		t ha ⁻¹	% plantas	Dias ⁴	
64 544	230	35	33 37	11 54	4 41	5	92	
68.411	247	34	42,80	14,56	3,58	0	100	
	final plantas.ha ⁻¹ 64.544	final Planta plantas.ha ⁻¹ cm 64.544 230	final Planta Relativo plantas.ha ⁻¹ cm % MS ⁶ 64.544 230 35	final Planta Relativo Verde plantas.ha ⁻¹ cm % MS ⁶ t h 64.544 230 35 33,37	final Planta Relativo Verde Seca plantas.ha ⁻¹ cm % MS ⁶ t ha ⁻¹ 64.544 230 35 33,37 11,54	final Planta Relativo Verde Seca Ensil ¹ plantas.ha ⁻¹ cm % MS ⁶ t ha ⁻¹ t ha ⁻¹ 64.544 230 35 33,37 11,54 4,41	final Planta Relativo Verde Seca Ensil 1 PA+PQ 2 plantas.ha ⁻¹ cm % MS 6 t ha -1 t ha -1 % plantas 64.544 230 35 33,37 11,54 4,41 5	

Médias

¹ grãos colhidos na ensilagem e secos em estufa ² PA + PQ = plantas acamadas e quebradas

³ ciclo médio da data de semeadura à colheita

⁴ Dias após a semeadura

Tabela 5. Parâmetros agronômicos das cultivares de milho colhidas para silagem na safra 2024/2025 em Mococa (SP)

Cultivar	População	Altura	Massa Seca	Produção	de Massa	Grãos	PA+PQ ³	Ciala 4
Cultival	População	Planta	Relativo ¹	Verde	Seca	Ensil. 2	PA+PQ	Ciclo ⁴
	plantas.ha ⁻¹	cm	% MS	t ha	a ⁻¹	t ha ⁻¹	% plantas	Dias
AGN 2M76 PRO3	64.573	210	35	37,34	13,25	5,89	0	92
AGN 2M40 PRO4	63.532	234	35	37,23	13,16	4,73	2	92
NS 44 VIP3	65.094	231	34	37,26	12,65	4,79	2	93
HL 22091 VIP3	65.615	240	33	36,58	12,18	4,58	0	91
DKB 356 PRO4	65.094	239	38	31,38	11,91	3,72	2	93
NS 71 VIP3	63.011	225	35	33,93	11,89	5,16	28	94
HL 2162 PRO2	65.094	226	33	36,19	11,86	5,03	3	92
AL Piratininga	61.449	240	32	37,16	11,79	3,26	22	92
AGN 2M33 PRO3	65.615	236	36	32,23	11,46	3,73	2	93
22066 VIP3	64.573	234	38	30,26	11,45	5,18	2	92
T 1503 PWU	66.135	231	34	33,43	11,31	4,01	0	93
AG 8701 PRO4	65.615	227	35	31,74	11,17	4,28	3	93
MG 616 PWU	63.532	222	30	37,08	10,99	3,44	0	91
DKB 358 PRO4	64.052	241	35	31,30	10,85	5,02	3	91
AGN 2M11 PRO3	62.490	236	33	32,44	10,68	3,63	6	91
DKB 390 PRO4	63.532	222	36	29,19	10,62	4,20	3	94
DKB 177 TRE	68.218	229	38	27,76	10,42	4,42	3	92
FS 695 PWU	64.573	214	36	28,09	9,99	4,32	3	93
Média	64.544	230	35	33,37	11,54	4,41	5	92
CV (%) 5	4,3	5,5	6,5	9,3	10,2	14,7	_	_
DMS (Tukey a 5%) 5	7.176	33	6	8,07	3,04	1,67	_	_
MS = teor de matéria seca determinado grãos colhidos na ensilagem e secos PA+PQ = plantas acamadas e quebra	em estufa adas	gia						
 4 ciclo da data de semeadura à colheita 5 CV = coeficiente de variação; DMS = 								
Dias anós a semeadura								

⁶ Dias após a semeadura

Tabela 6. Parâmetros agronômicos das cultivares de milho colhidos para silagem na safra 2024/2025 em Tatuí (SP)

Cultivar	População	Altura	Massa Seca	Produção	de Massa	Grãos	PA+PQ ⁵	Ciclo ³
Cultival	População	Planta	Relativo ¹	Verde	Seca	Ensil. ²	PA+PQ *	Cicio
	plantas.ha ⁻¹	cm	% MS	t ha ⁻¹		t ha ⁻¹	% plantas	Dias
HL 22091 VIP3	71.031	240	35	44,78	15,51	3,84	0	98
NS 44 VIP3	68.758	250	34	44,87	15,43	4,68	0	103
AGN 2M76 PRO3	67.622	259	36	43,38	15,41	4,33	0	99
AL Piratininga	64.212	270	31	49,90	15,23	2,31	0	100
AG 8701 PRO4	68.758	234	35	44,12	15,18	3,55	0	98
AGN 2M40 PRO4	69.327	240	36	42,03	14,96	3,09	0	103
T 1503 PWU	69.327	246	35	42,34	14,91	5,11	0	101
MG 616 PWU	68.190	236	33	45,21	14,70	5,50	0	101
AGN 2M33 PRO3	65.917	250	35	42,47	14,70	3,17	0	99
NS 71 VIP3	69.327	238	35	42,38	14,67	3,79	0	101
AGN 2M11 PRO3	68.758	247	35	41,66	14,43	3,08	0	100
22066 VIP3	68.190	250	36	39,99	14,24	3,75	0	100
FS 695 PWU	69.895	232	33	43,48	14,20	3,91	0	101
DKB 356 PRO4	69.895	264	33	42,41	14,08	2,68	0	98
DKB 177 TRE	68.758	242	31	45,25	14,05	2,71	0	99
HL 2162 PRO2	67.622	255	34	41,37	13,96	3,57	0	103
DKB 358 PRO4	67.054	242	38	35,46	13,55	3,09	0	100
DKB 390 PRO4	68.758	246	33	39,37	12,96	2,31	0	99
Média	68.411	247	34	42,80	14,56	3,58	0	100
CV (%) 4	2,7	2,8	5,2	8,8	8,3	14,8	_	_
DMS (Tukey a 5%) 4	4.707	18	5	9,77	3,15	1,39		

¹ MS = teor de matéria seca determinado em laboratório de bromatologia
2 grãos colhidos na ensilagem e secos em estufa
3 ciclo da data de semeadura à colheita
4 CV = coeficiente de variação; DMS = diferença mínima significativa
5 PA+PQ = plantas acamadas e quebradas

⁶ Dias após a semeadura

Tabela 7. Caracteres agronômicos de milho avaliados na colheita de grãos na maturidade em Adamantina na safra 2024/2025

Cultivar	Altura	Índice de	Proporção	População	Produti	Florescimento	$DA + DO^4$
Cultival	de planta	espigas	de grãos 1	Fopulação	vidade ²	riorescimento	PA+PQ
	cm		%	plantas.ha ⁻¹	t.ha ⁻¹	Dias ⁵	%
HL 22091 VIP3	236	1,1	73	64.167	8,16	60	1
T 1503 PWU	246	1,1	76	65.278	7,58	59	19
FS 695 PWU	239	1,1	73	69.722	7,57	62	2
AGN 2M11 PRO3	243	1,1	73	62.222	7,48	60	11
MG 616 PWU	227	1,0	76	65.556	7,33	57	30
NS 44 VIP3	249	1,1	74	65.000	7,10	59	2
AG 8701 PRO4	229	1,1	73	66.944	7,07	59	3
22066 VIP3	237	1,2	74	62.500	7,04	58	5
DKB 356 PRO4	255	1,1	74	67.500	7,03	62	4
DKB 390 PRO4	239	1,1	74	63.611	6,77	61	5
AGN 2M40 PRO4	243	1,2	72	61.389	6,54	61	4
AGN 2M33 PRO3	242	1,1	71	65.278	6,45	62	4
DKB 358 PRO4	237	1,2	72	62.500	6,43	62	37
NS 71 VIP3	240	1,2	74	63.889	6,29	63	2
AGN 2M76 PRO3	237	1,1	75	55.000	6,26	59	31
DKB 177 TRE	239	1,1	70	63.611	5,58	61	20
HL 2162 PRO2	249	1,2	71	61.111	5,51	62	5
AL Piratininga	265	1,0	71	58.056	4,97	62	33
Média	242	1,1	73	63.519	6,73	60	12
CV (%) 3	3,1	10,6	3,1	5,0	13,7	2,91	-
DMS (Tukey a 5%) 3	20	0,3	6	8.211	2,39	5	_

¹ proporção de grãos nas espigas com palha ² corrigida para 13% de umidade

³ CV = coeficiente de variação e DMS = diferença mínima significativa

⁴ PA+PQ = plantas acamadas e quebradas

⁵ Dias após a semeadura

Tabela 8. Caracteres agronômicos de milho avaliados na colheita de grãos na maturidade em Votuporanga na safra 2024/2025

Cultivar	Altura de planta	Índice de espigas	Proporção de grãos ¹	População	Produti vidade ²	Florescimento	PQ+PA ⁵
	cm	copigac	%	plantas.ha ⁻¹	t.ha ⁻¹	Dias ⁴	% plantas
				piaritaoiria	una	Dido	, o p. o
MG 616P WU	189	1,0	81	64.063	9,93	56	2
NS 44 VIP3	211	1,2	78	61.875	9,78	57	0
T 1503 PWU	215	1,2	80	62.188	9,70	56	5
HL 22091 VIP3	202	1,1	76	61.875	9,56	57	0
DKB 358 PRO4	199	1,2	79	62.188	9,39	57	1
DKB 390 PRO4	222	1,1	78	65.000	9,24	56	1
AGN 2M76 PRO3	222	1,2	79	63.125	9,06	57	1
DKB 356 PRO4	195	1,2	77	63.438	8,97	58	0
AG 8701 PRO4	192	1,2	77	63.750	8,94	55	0
NS 71 VIP3	198	1,2	78	63.438	8,61	56	0
AGN 2M40 PRO4	200	1,1	77	62.813	8,55	56	1
HL 2162 PRO2	205	1,2	79	61.875	8,43	57	11
FS 695 PWU	189	1,2	76	62.188	8,37	58	0
22066 VIP3	208	1,3	77	63.750	8,35	57	0
AGN 2M11 PRO3	209	1,1	76	63.750	8,06	57	2
AGN 2M33 PRO3	229	1,1	74	64.063	7,89	57	1
DKB 177 TRE	202	1,4	74	61.250	7,63	57	6
AL Piratininga	236	1,0	72	60.625	6,10	57	9
Média	207	1,2	77	62.847	8,70	57	2
CV (%) 3	8,55	10,2	1,3	3,5	8,8	1,11	-
DMS (Tukey a 5%) ³	4,6	0,3	3	5.701	1,99	2	_

 ¹ proporção de grãos nas espigas com palha
 ² corrigida para 13% de umidade
 ³ CV = coeficiente de variação e DMS = diferença mínima significativa
 ⁴ Dias após a semeadura

Tabela 9: Predição do valor nutritivo de cultivares de milho, planta inteira - Mococa, safra 2024/2025

Cultivor	Amido	CNF	EE	FDA	FDNom	Lignina	MM	NDT	PB	Produtiv	/idade
Cultivar					% da MS ¹					T leite/T MS	T leite/ha
22066 VIP3	18,7	30,4	2,1	34,3	56,7	3,2	3,7	65,3	9,0	1,45	16,58
AGN 2M40 PRO4	8,0	23,3	2,2	36,9	63,4	4,0	4,1	60,8	9,2	1,24	16,34
AGN 2M76 PRO3	12,4	27,2	2,1	35,8	59,3	3,8	4,5	61,5	9,1	1,21	16,10
HL 22091 VIP3	9,3	25,2	2,2	36,0	60,8	3,6	3,8	61,5	9,8	1,26	15,37
DKB 358 PRO4	16,1	28,3	2,3	34,7	57,7	3,2	4,2	64,7	9,6	1,41	15,27
NS 44 VIP3	11,4	25,8	2,0	37,3	61,9	4,1	3,9	60,8	8,6	1,20	15,22
MG 616 PWU	11,8	27,2	1,9	34,4	57,5	3,0	5,0	62,8	10,6	1,34	14,73
DKB 356 PRO4	9,0	24,2	2,1	36,5	60,9	3,6	4,7	60,5	10,3	1,23	14,61
T 1503 PWU	7,3	24,6	2,1	36,4	60,2	3,5	4,1	60,3	10,8	1,27	14,42
AL Piratininga	8,9	25,6	2,0	36,9	60,2	3,9	4,4	59,8	10,0	1,18	13,98
NS 71 VIP3	7,4	23,0	2,0	39,7	63,9	3,8	3,9	60,3	9,3	1,17	13,89
HL 2162 PRO2	6,4	22,9	2,3	38,5	62,8	4,1	3,9	59,3	9,7	1,15	13,64
AGN 2M11 PRO3	8,9	24,3	2,1	35,2	60,6	3,7	4,9	60,8	10,2	1,26	13,37
AGN 2M33 PRO3	5,7	22,8	2,1	37,3	64,1	3,6	3,8	59,5	9,4	1,15	13,22
FS 695 PWU	8,1	22,4	2,3	36,9	63,0	3,3	4,6	62,3	9,8	1,31	13,09
DKB 177 TRE	9,2	21,9	1,9	39,5	65,4	3,2	4,2	62,3	8,7	1,22	12,68
AG 8701 PRO4	6,4	26,1	1,9	35,8	59,0	3,6	4,9	57,0	10,4	1,11	12,42
DKB 390 PRO4	6,1	22,9	2,0	37,9	63,5	4,0	4,0	58,8	9,7	1,12	11,90
Média	9,5	24,9	2,1	36,6	61,1	3,6	4,3	61,0	9,7	1,24	14,27
CV (%) 2	36,5	9,6	11,3	4,7	4,1	10,6	15,2	3,3	5,9	9,2	14,3
DMS (Tukey a 5%) ²	8,9	6,2	0,6	4,5	6,5	1,0	1,7	5,3	1,2	0,30	5,28

¹ MS = Matéria seca; CNF = carboidratos não fibrosos; EE = extrato etéreo; FDA = fibra em detergente ácido; FDNom = fibra em detergente neutro; MM = matéria mineral; NDT = nutrientes digestíveis totais; PB = proteína bruta; T leite/T MS = toneladas de leite por tonelada de matéria seca; T leite/ha = toneladas de leite por hectare

² CV = coeficiente de variação e DMS = diferença mínima significativa

Tabela 10: Predição do valor nutritivo de cultivares de milho, planta inteira - Tatuí, safra 2024/2025

Cultivan	Amido	CNF	EE	FDA	FDNom	Lignina	MM	NDT	PB	Produtiv	idade
Cultivar	% da MS ¹									T leite/T MS	T leite/ha
MG 616 PWU	15,5	29,8	2,4	34,4	55,8	54,5	3,4	4,4	64,8	1,37	20,17
T 1503 PWU	15,8	28,7	2,4	35,7	57,3	56,7	3,6	3,8	63,3	1,32	19,60
FS 695 PWU	15,0	28,8	2,4	34,8	57,2	56,4	3,5	3,9	64,5	1,36	19,33
AG 8701 PRO4	11,9	26,2	2,3	36,0	59,4	58,6	3,9	4,0	61,5	1,25	18,96
NS 44 VIP3	12,5	28,0	2,5	35,7	58,8	58,2	4,6	4,2	61,8	1,19	18,28
HL 22091 VIP3	10,7	25,6	2,3	36,8	60,3	59,4	4,5	4,2	59,3	1,17	18,06
AGN 2M40 PRO4	11,2	23,5	2,3	37,1	61,5	60,6	4,0	4,7	60,5	1,21	17,97
HL 2162 PRO2	8,8	24,0	2,6	37,9	61,5	60,6	4,5	3,9	60,3	1,24	17,24
DKB 177 TRE	9,2	22,7	2,5	37,8	62,3	61,4	4,9	4,3	59,8	1,21	17,04
22066 VIP3	12,0	24,7	2,6	37,1	60,9	60,0	4,0	4,2	60,3	1,19	16,92
AL Piratininga	6,5	23,7	2,4	36,8	60,8	59,9	4,2	5,0	58,0	1,10	16,79
NS 71 VIP3	9,3	23,9	2,3	37,5	61,8	60,9	4,2	4,8	59,0	1,12	16,40
AGN 2M11 PRO3	7,7	23,2	2,4	37,0	62,4	61,5	4,9	4,6	58,0	1,13	16,26
DKB 358 PRO4	9,7	22,9	2,7	37,4	62,2	61,4	4,5	4,8	59,8	1,19	16,08
AGN 2M33 PRO3	10,0	25,4	2,3	36,1	60,6	59,6	4,7	4,5	58,8	1,08	15,93
AGN 2M76 PRO3	8,4	22,2	2,6	39,5	64,1	63,3	5,3	4,4	57,7	1,00	15,40
DKB 356 PRO4	5,8	22,5	2,2	38,7	62,9	62,0	4,4	4,6	57,8	1,09	15,35
DKB 390 PRO4	9,4	24,5	2,3	37,7	61,3	60,4	4,8	4,4	58,3	1,07	13,96
Média	10,5	25,0	2,4	36,9	60,6	59,7	4,3	4,4	60,2	1,18	17,21
CV (%) 2	19,8	12,7	11,7	4,4	5,1	4,7	13,5	12,7	2,6	6,5	10,6
DMS (Tukey a 5%) ²	5,4	8,3	0,7	4,2	8,0	5,2	1,5	1,4	4,1	0,20	4,75

¹ MS = Matéria seca; CNF = carboidratos não fibrosos; EE = extrato etéreo; FDA = fibra em detergente ácido; FDNom= fibra em detergente neutro; MM = matéria mineral; NDT = nutrientes digestíveis totais; PB = proteína bruta; T leite/T MS = toneladas de leite por tonelada de matéria seca; T leite/ha = toneladas de leite por hectare

² CV = coeficiente de variação e DMS = diferença mínima significativa

ANEXO I

ACESSO PARCIAL AOS DADOS

Guia da Forragem

Site e aplicativo para celular http://guiadaforragem.com.br/

Site Zea mays

https://zeamays.com.br/avaliacao-de-cultivares/silagem/

